

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2015

CHEMISTRY, PAPER-I

	OWED: THREE HOURS CQS): MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MARKS = 20 MAXIMUM MARKS = 80			
NOTE: (i)	Part-II is to be attempted on the separ	ate Answer Book.				
(ii)	Attempt ONLY FOUR questions from	PART-II. ALL question	s carry EQUAL marks.			
(iii)	All the parts (if any) of each Question must be attempted at one place instead of at different places.					
(iv)	Candidate must write Q. No. in the An	swer Book in accordance	with Q. No. in the Q.Paper.			
(v)	No Page/Space be left blank between be crossed.	the answers. All the bla	nk pages of Answer Book must			
(vi)	Extra attempt of any question or any pa	art of the attempted question	on will not be considered.			
(vii)	Use of Calculator is allowed.					

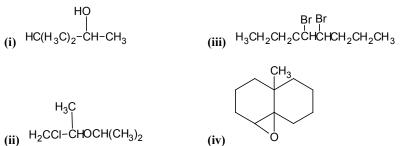
PART-II

Q. No. 2.	(a) (b) (c)	What is Pauli's Exclusion Principle? Give the electronic configuration of Sodium. What are Bohr's postulates and how do they explain the hydrogen atom spectrum?	(5) (5) (10)	(20)
Q. No. 3.	(a) (b)	Define Heat of combustion. How is it experimentally determined? For the combustion of 1 mole of benzene at 25 °C, the heat of reaction at constant pressure is given by $C_6H_6(l) + 15/2 O_2(g) \qquad 6CO_2(g) + 3H_2O(l);$ $H^\circ = -326720.32 J$ Calculate E at 25 °C.	(10) (10)	(20)
Q. No. 4.	(a) (b) (c)	Describe the manufacture of Phosphorus on a large scale. Draw the figure of Nitrogen cycle in nature. Compare the physical properties of three allotropic forms of Carbon	(5) (5) (10)	(20)
Q. No. 5.	(a) (b)	How is steel manufactured? Describe various chemical reactions taking place in the blast furnace. Describe the electrolytic refining of Copper.	(10) (10)	(20)
Q. No. 6.	(a) (b)	What are fertilizers? Why are they needed? Describe various types of fertilizers and their uses. Describe the processes of Urea manufacturing in Pakistan.	(10) (10)	(20)
Q. No. 7.	(a) (b) (c)	What are transition metals? Discuss their characteristic features Draw molecular orbital diagrams of $[Co(NH_3)_6]^{3+}$ and $[CoF_6]^{3-}$ What was Rutherford's atomic model?	(5) (10) (5)	(20)
Q. No. 8.	(a) (b)	What is Greenhouse Effect? How does it cause global warming of Earth? What is meant by water pollution? Discuss various sources of water pollution.	(10) (10)	(20)

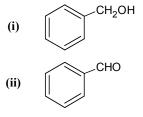
CHEMISTRY PAPER-I

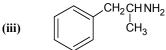
TIME ALI	.OW	ED: THREE HOURS	IRY PAPER-I PART-I (MCQS)	MAXIMUM MARK	x = 20
PART-I(M			PART-II	MAXIMUM MARK	
(iii)	Att All plac Can No be Ext	rt-II is to be attempted on the separ empt ONLY FOUR questions from the parts (if any) of each Question ces. adidate must write Q. No. in the Ans Page/Space be left blank between crossed. tra attempt of any question or any pa e of Calculator is allowed.	PART-II. ALL quest in must be attempted at swer Book in accordance the answers. All the b	t one place instead of at one place instead of at one place with Q. No. in the Q.Pa lank pages of Answer Bo	differen per. ok mus
		<u>P</u>	ART-II		
Q. No. 2.	(a)	What is Schrodinger wave equichemistry.	ation? Discuss its in	nportance in quantum	(6)
	(b)	Solve the Schrodinger wave equat find the expression for the energy a	and wave function.		(8)
	(c)	What is a well-behaved function acceptable wave function?	? What are the requir	ements of a physically	(6)
Q. No. 3.	(a) (b)	What is Gibbs free energy? Discus Give a brief account of transition			(6) (8)
	(c)	collision theory. Explain 3 rd law of thermodynam absolute value of entropy?	2	0 0	(6)
Q. No. 4.	(a)	Define and explain Langmuir adso	rption isotherm. What	are its limitations?	(8)
	(b) (c)	What is acid-base catalysis? Discu What is Phase rule? Discuss its ap	-	•	(6) (6)
Q. No. 5.	(a)	What are solubility product and co chemical analysis	mmon ion effect? Disc	uss their significance in	(8)
	(b)	Valence shell electron pair repulsi molecules. Using this theory expla			(7)
	(c)	Explain why HSH bond angle in 109.5	H ₂ S is slightly less th	an the tetrahedral angle	(5)
Q. No. 6.	(a)	Describe main features of crystal of coordination complexes?	field theory, How this	theory explains colour	(10)
	(b)	Write the electronic configuration Ni^{2+} , Cu, Mn $^{2+}$, Cr $^{3+}$	for each of the following	ng:	(4)
	(c)	What is John-Teller theorem? Exp	lain its significance in	coordination chemistry.	(6)
Q. No. 7.	(a)	What are lanthanides? How are the			(10)

(b) What is decay law? How half-life and decay constant are related with each (5)



FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION-2016 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT**


CHEMISTRY PAPER-II


		HREE HOURS	PART-I (N	- /	IAXIMUM MARK	
PART-I(M	CQS): M	AXIMUM 30 MINUTES	PART-II	Ν	IAXIMUM MARK	$\mathbf{XS} = 80$
NOTE: (i)	Part-II is	to be attempted on the separ	rate Answer	Book.		
(ii)	Attempt O	NLY FOUR questions from	n PART-II. A	ALL questions c	arry EQUAL marks	5.
(iii)) All the par	ts (if any) of each Question	n must be at	tempted at one	place instead of at	different
	places.					
(iv)	Candidate	must write Q. No. in the An	swer Book ir	accordance with	h Q. No. in the Q.Pa	iper.
(v)	No Page/S	space be left blank between	the answers	. All the blank p	ages of Answer Bo	ok must
	be crossed					
(vi)	Extra atten	npt of any question or any p	art of the atte	empted question	will not be consider	ed.
(vii)	Use of Cal	lculator is allowed.				
		1	PART-II			
		<u>-</u>	<u>AN1-11</u>			
Q. No. 2.	Write briefly	on the following terms:			(2 each)	(20)
	(i)	Hyper-conjugation	(ii)	Aromaticity		
	(iii)	Grignard's reagent	(iv)	$S_N 1$ reaction		
	(v)	Molecular chirality	(vi)	Monosaccharide	S	

- Chemical shift (viii Glycolysis (vii)
 - Friedal Craft alkylation **(x)**
- Q. No. 3. (a) How would you synthesize each of the following molecule from an alkene of appropriate (8) structure (structure of your choice).

- (b) Write the expected major product of the reaction of propyne with each of the following (6) reagents.
 - (i) Cu₂Cl₂, O₂, pyridine (iv) H₂O, HgSO₄, H₂SO₄ (ii) Na, ND₃
 - Di-isoamylborane, then NaOH, H₂O₂ (v)
 - [(CH₃)₂CHCH₂CH₂]₂BD then CH₃CO₂H
- (6) (c) Starting with benzene, design reasonable syntheses of each of the following compounds.

Detergents

(ix)

(iii)

- Di-isoamylborane, then CH₃CO₂D (vi)

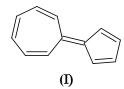
CHEMISTRY PAPER-II

(i)

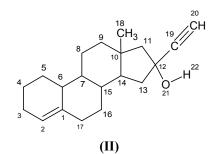
- (b) Draw the structures of the following molecules:
 - 5-(2,2-Dimethylpropyl)nonane (vi) 4-(2-Ethylbutyl)decane

(vii)

- (ii) 2,3-Dimethylhept-3-ene
- (iii) 1-Chloro-1-methoxy-2methylbut-1-ene
- (viii 5,5-Dichloro-3-methylhepta-3,6-


5-Ethyl-4,6-dimethylhept-4-en-2-yne

(iv) 6-Chloro-2-nitrooct-1-en-3-yne (ix) 6-bromo-5-chloro-9-


nitropentadecane

dien-1-yne

- (v) 8-Chloro-7-methoxy-5-methyl- (x) 6-chloroocta-1,3-diyne 4-nitroundec-5-ene
- (c) (i) The structure(I) given below has significant dipole moment. Which end of (2) the molecule would you expect to owe positive charge, and which tend to be negative.

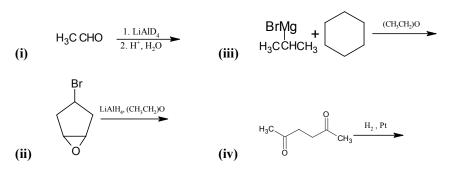
(ii) The structure(II) given below is a component of certain oral contraceptives: (3)

Locate in this structure an example of each of the following bonds or atoms

- A highly polarized covalent bond
- Sp-hybrid carbon atoms
- A nearly unpolarized covalent bond

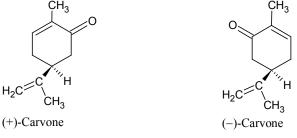
Q. No. 5.

(a)

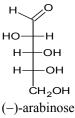

Consider the reaction of bromocyclohexane with each of the four reagents below, and (7) answer the questions below. Also write down the reaction mechanism in each case.

-			
H_2O	OH	CH ₃ COOH	CH ₃ COO ⁻
<i>(i)</i>	<i>(ii)</i>	(iii)	(<i>vi</i>)

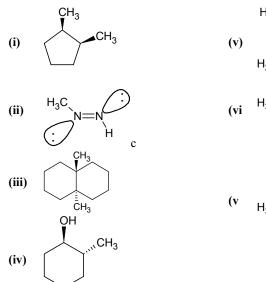
- (i) What is the most important type of reaction mechanism in each case?
- (ii) Which reagent gives the most elimination product?
- (iii) Which reagent is most useful in synthesizing the alcohol?
- (b) Evaluate each of the possible alcohol syntheses below as being good (the desired (5) alcohol is major or only product), not so good (the desired alcohol is a minor product, or worthless).

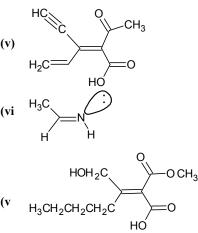

(i)
$$CH_3CH_2CI \longrightarrow CH_3CH_2OH$$
 (iv
 $O_2SOH_3C \longrightarrow CH_3 \xrightarrow{OH, H_2O, \Delta} CH_3OH$
(ii) $H_3CCHCH_3 \xrightarrow{OH, H_2O, \Delta} H_3CCHCH_3$
(iii) $H_3COCH_3 \xrightarrow{OH, H_2O, \Delta} CH_3OH$ (v) OH, H_2O, Δ

(c) Write the major product(s) of each of the following reactions. It is implied that aqueous work-up has taken place in all those cases that require it to obtain the organic product.



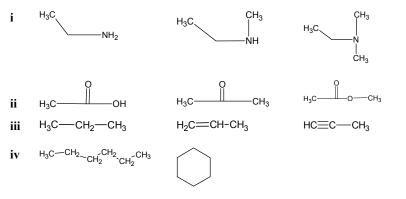
Q. No. 6. (a) The two isomers of carvone are given below. Which is **R** and which is **S**?



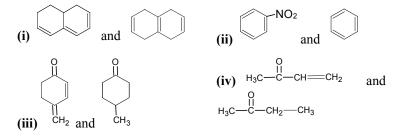

(b) The structure of compound given below is a sugar called (-)-arabinose. Its (3) specific rotation is -105°.

- (i) Draw enantiomer(s) of (–)-arabinose
- (ii) Draw diastereomer(s) of (-)-arabinose
- (iii) Does (-)-arabinose have any optically inactive diastereomers? If it does, draw one.
- (c) Assign E,Z designation to the following structures.

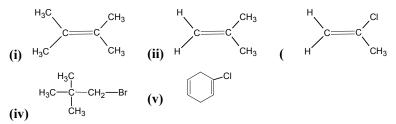
(7)



CHEMISTRY PAPER-II


- (d) Draw the structures of the product(s) described for each reaction. Specify all (8) aspects of the stereochemistry.
 - (i) Stereospecific anti addition of bromine to cis- and trans-cinnamic acid.
 - (ii) Methanolysis of S-3-bromooctane with 6% racemization.
 - (iii) Stereospecific syn thermal elimination of acetic acid from 1R,2Sdiphenylpropyl acetate
 - (iv) Stereoselective epoxidation of bicyclo[2.2.1]hept-2-ene proceeding 94% fromtheexo face.
- Write a brief account on the following: Q. No. 7.
- (c) Primary structure of Proteins
- (b) Classification of Amino acids (d) Glycogenesis
- Q. No. 8. (a). Differentiate following using IR Spectroscopy?

(a) Biological importance of starch



(b). What type of electronic transition are possible in the following compounds? (2)

- (i) Butadiene (iii) Acetaldehyde
- (ii) Diethyl ether Trimethylamine (iv)
- (c). How will you distinguish the following compounds using UV/Visible (4) spectrophotometer?

Give the chemical shift of the following compounds for each proton (d).

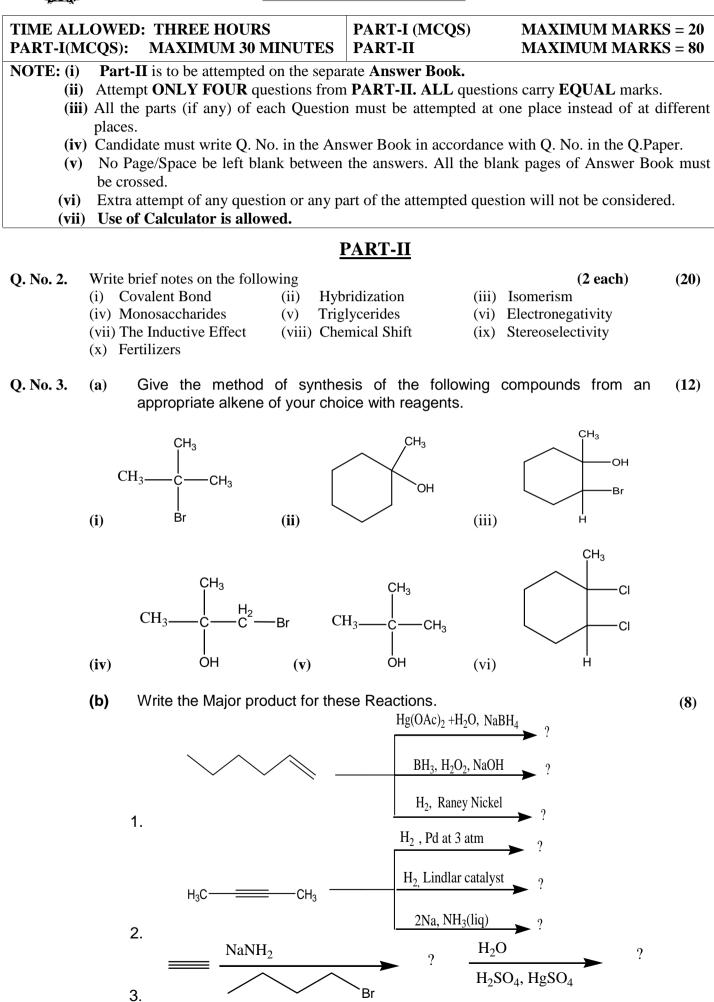
(5) (e). The mass spectrum of compound shows following peaks: m/e= 120, relative intensity=20% (M⁺ peak), m/e= 105, relative intensity=80%, m/e= 77, relative intensity=96%, m/e= 43, relative intensity=35%. Assign the structure which would be expected. Page 4 of 4

(4)

(20)

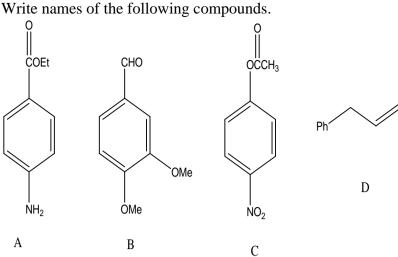
(5 each)

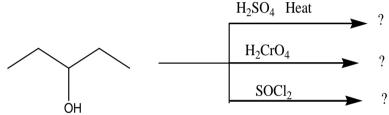
(5)


CHEMISTRY PAPER-I

TIME AL		ED: THREE HOURS): MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MARK MAXIMUM MARK	
NOTE: (i) (ii) (iii)) Atte	rt-II is to be attempted on the separ empt ONLY FOUR questions from the parts (if any) of each Question res	PART-II. ALL question		
(iv (v)) Can No	ndidate must write Q. No. in the Ans Page/Space be left blank between crossed.			-
(vi) (vii		ra attempt of any question or any parts of Calculator is allowed.	art of the attempted question	on will not be considere	ed.
		<u>P</u>	PART-II		
Q. No. 2.	(a)	Derive Schrodinger wave equation box.	n for motion of a particle	e in one dimensional	(10)
	(b)	Solve Schrodinger wave equation energy of a particle in one dimension	-	for wave function	(6)
	(c)	What is Eigen function and Eigen	value? Give examples.		(4)
Q. No. 3.	(a)	Define heat capacities and molar gases.		•	(10)
	(b)	What is Gibbs energy? Derive a reand equilibrium constant.		Gibbs energy change	(6)
	(c)	Differentiate spontaneous and non			(4)
Q. No. 4.	(a) (b)	State and explain Kohlrausch's law What is meant by standard de chemistry.		cance in analytical	(10) (6)
	(c)	Briefly describe conductometric ti	trations.		(4)
Q. No. 5.	(a)	Discuss the effect of temperature Arrhenius equation. How can pre-exponential factor for a chemi	n you determine activ cal reaction using Arrheni	vation energy and	(10)
	(b) (c)	Derive kinetic equation for 1 st orde Prove that half life period for concentration of reactant.		dependent of initial	(6) (4)
Q. No. 6.	(a)	What is adsorption isotherm? adsorption of a gas on solid surfac	e	ption isotherm for	(10)
	(b) (c)	What is enzyme catalysis? Discuss What are surfactants? Give their p	s its kinetics.		(6) (4)
Q. No. 7.	(a)	What is electrophoresis? Give biochemistry.	its principle and discus	s its applications in	(10)
	(b) (c)	Give six chemical properties of nit What is Common ions effect? Giv	-		(6) (4)
Q. No. 8.	(a)	State John-Teller theorem. Explain complexes.	n it using suitable example	es from coordination	(10)
	(b) (c)	Give postulates of Werner's theory Briefly describe nuclear decay rate	-		(6) (4)

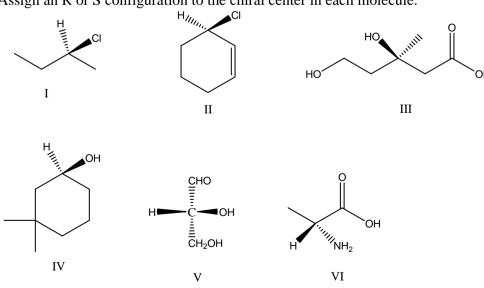
FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2017 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT


CHEMISTRY PAPER-II


CHEMISTRY PAPER-II

Q. No. 4.

(a) What is aromaticity? Explain the Hückel criteria for aromaticity. **(b)**


- (c) Write the reaction and mechanism of Friedel Craft alkylation and acylation (10)reaction.
- What is Grignard reagent? What are its applications? How would you prepare Q. No. 5. (a) (8) Grignard reagent starting from an alkyl halide of your choice. (3)
 - **(b)** Give the Product of the following reactions:

(c) Give the IUPAC nomenclature of Aldehydes and Ketones. Give the major products of the following reactions. **(d)**

2EtOH + acid? Ph₃P CH₂ ? **HCN** ? CH₃MgBr ? PhNH₂ ?

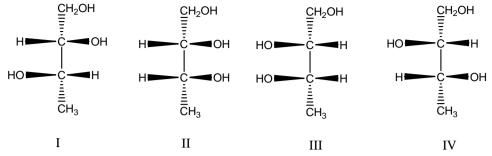
Q. No. 6. (a) What is stereoisomerism? Give an account of different types of stereoisomerism. **(b)** Assign an R or S configuration to the chiral center in each molecule.

ΟН

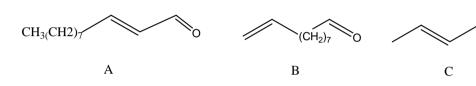
Page 2 of 3

(6) (4)

(4)

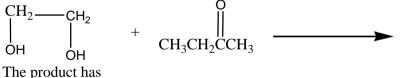

(5)

(5)


(9)

CHEMISTRY PAPER-II

(c) In the following molecules identify that which are diastereomers and which are (6) enantiomers?


- What is the difference between Dispersive IR Spectrometer and Fourier Q. No. 7. (a) (5) Transform (FT)-IR Spectrometer. (3)
 - **(b)** Differentiate the following on the basis of IR.

(c) Differentiate the following pairs of compounds on the basis of UV.

OCH₃ OCH₃ **OCH**₃ В В А А 0 \cap ÓCH₃ A A Br В В

(d) Deduce the structure of the product of the given reaction from the following data. (4)

IR: Four strong bands that appear in the range of 1200 to 1020 cm⁻¹ NMR: 3 Proton triplet at 0.8ppm, 3 Proton singlet at 1.3ppm, 2 proton quartet at 1.8ppm and 4 proton multiplet at 4.0ppm

Q. No. 8. Write notes on any **FOUR** of the following:

- Reactions of Monosaccharides (a)
- **Biosynthesis of Cholesterol** (b)
- (c) Primary structure of Polypeptides and Protein.
- Prostaglandins (d)
- Synthesis of Peptides (e)

(20)

(5 each)

(8)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2018 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

CHEMISTRY, PAPER-I

PART-I(M	ICQS	,	PART-I (MCQS) PART-II	MAXIMUM MARK MAXIMUM MARK	
(iii) Att i) All plac		PART-II. ALL question must be attempted at	one place instead of at d	lifferen
(iv (v)	No be	ndidate must write Q. No. in the Ans Page/Space be left blank between crossed.	the answers. All the bla	ank pages of Answer Boo	ok mus
(vi) (vii		tra attempt of any question or any pa e of Calculator is allowed.	art of the attempted ques	stion will not be considere	ed.
			PART-II		
Q. No. 2.	(a).	Explain de Broglie's hypothesis Germer proved the dual nature o	-	on. How Davisson and	(10)
	(b).	Explain transport number. How it ions in AgNO ₃ solution?	can be determined by H	ittorf 's method for Ag ⁺	(10)
Q. No. 3.	(a).	Explain the working of quinhydror	ne electrode.		(5)
	(b).	Calculate the standard heat of combustion is $-2220.2 \text{ kJ mol}^{-1}$. are $-393.5 \text{ and } -285.8 \text{ kJ mol}^{-1}$ res	The heats of formation		(5)
	(c).	Describe the criteria of spontane change in entropy, enthalpy ar equations.	• •	-	(10)
Q. No. 4.	(a).	Discuss he factors which can affect	et the rate of a chemical	reaction.	(5)
	(b).	Explain Arrhenius equation. Disc explain it by graphical representat	-	of activation energy and	(8)
	(c).	Explain enzyme catalysis with excatalysis.	amples. Also give som	e characteristics of this	(7)
Q. No. 5.	(a).	What are colloids? How are they sulphur can be prepared?	classified? Describe ho	ow colloidal solution of	(8)
	(b).	What is meant by confidence lin natural gas condensate gave follow 21.9 21.5 19.9 21.3 21.7 23 Calculate the 95% and 99% confid	wing results in ng/mL: 8 24.7		(7)
	(c).	Explain R_f value. Suppose that concorrectly chromatography using a non-polyhow the polarity of a compound in	ar solvent like hexane	. Describe and explain	(5)
Q. No. 6.	(a).	What is electrophoresis? Explain applications as a separation and cl	• • •		(7)
	(b).	Explain the paramagnetic behavi orbital theory. Explain why the ex- basis of MOT?			(6)
	(c).	Explain the molecular shape of [N Also discuss its magnetic behaviou		of valence bond theory.	(7)

Page 1 of 2

CHEMISTRY, PAPER-I

- Q. No. 7. (a). Using VSEPR theory, identify the type of hybridization and draw the structure of (5) OF₂. What are oxidation states of O and F?
 - (b). A buffer of pH 9.26 is made by dissolving x moles of ammonium sulphate and 0.1 mole of ammonia into 100 mL solution. If pK_b of ammonia is 4.74, calculate the value of x.
 - (c). Explain soft and hard acids and bases (SHAB) concept with examples. How is it(10) able to explain the stability of complexes and reaction rates?
- Q. No. 8. (a). Explain crystal field theory. How it differs from valence bond theory? Also (10) explain crystal field splitting. How crystal field stabilization energy of a complex is calculated?
 - (b). Write systemic names of following compounds. (5) $K_4[NiF_6], K_3[Fe(CN)_6], [Co(NH_3)_4Cl_2]Cl, K_2[PtCl_6], K_2[Cu(CN)_4]$
 - (c). Write the coordination number and oxidation state of the metal ion in each of the (5) above stated complexes.

FEDERAL PUBLIC SERVICE COMMISSION
COMPETITIVE EXAMINATION-2018
FOR RECRUITMENT TO POSTS IN BS-17
UNDER THE FEDERAL GOVERNMENT

CHEMISTRY, PAPER-II

TIME ALL PART-I(MO	CQS):	MAXI	MUM 30 MINUT	ES P	ART-I (MCQS) ART-II		IMUM MARKS	
· · ·	Attemp All the	t ONLY	e attempted on the FOUR questions f any) of each Qu	from P	ART-II. ALL q		-	fferent
(iv) (v)		ge/Space	write Q. No. in the be left blank bet			-		
(vi)			of any question or	any par	t of the attempted	l question will	not be considere	d.
				PA	RT-II			
Q.No. 2.	(a)	Define	e Resonance and R	esonanc	e effect.		(10)	
	(b)	Write (i)	Short note on follo Tautomerism	-	perconjugation.		(5+5)	(20)
Q.No. 3.	(a)	Compl (i)	lete the following CH ₃ -CH=CH ₂ +				(8×2=16)	
		(ii)	CH ₃ -CH=CH ₂ +	Ni	` →			
		(iii)	CH_3 - $CH=CH_2$ +	dil. H ₂	SO₄ →			
		(iv)	CH ₃ -CH=CH ₂ +	$CH_3 - 0$	C-H→	•		
		(v)	CH_3 - $CH=CH_2$ +	$Br_2 \underline{CC}$	$\sim \sim $			
		(vi)	$CH_3 - C \equiv CH_3 =$	- Na / li	g NH ₃	\rightarrow		
		(vii)	$CH \equiv CH + NaN$	H ₂ —	\longrightarrow			
		(viii)	$CH \equiv CH + H_2O$	Hz	$SO_4 / HgSO_4$			
	(b)		ne forms a precipion where 2-Butyne	tate wit	h an ammonical	solution of silv	rer (4)	(20)
Q.No. 4.	Expla (i)	in electr Nitrat	ophilic substitutio ion (ii		on mechanism w lphonation.	ith the help of:		(20)
Q.No. 5.	(a)	Disting (i) (ii) (iii)	guish between: Configuration an Enantiomer and R. Convention a	Diastree	omers		(4×3=12)	
	(b)		e specific rotation.			ing polarimeter	r? (8)	(20)
Q.No. 6.	(a)	What o	do you mean by th	e setting	g of cement.		(10)	
	(b)	Discus	s future of cement	industr	y in Pakistan.		(10)	(20)
Q.No. 7.	(a)		n Aldol condensat	ion reac	tion with examp	les.	(10)	
	(b) (c)		are proteins? n Bio synthesis of	choleste	erol.		(5) (5)	
Q.No. 8.		-	llowing:				(4 marks each)	(20)
V ^{.11} U. 0.	(a) (c) (e)	Beers Hooks	Lamberts Law.	(b) (d)		ds Fieser Rule iple of NMR?		(20)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2019 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

CHEMISTRY, PAPER-I

	E ALL Γ-I(MC	OWED: THREE HOURSPART-I (MCCCQS): MAXIMUM 30 MINUTESPART-II	QS) MAXIMUM MARKS = 20 MAXIMUM MARKS = 80
NOT	E: (i) (ii) (iii)	Part-II is to be attempted on the separate Answer Boo Attempt ONLY FOUR questions from PART-II . AL All the parts (if any) of each Question must be attem places.	L questions carry EQUAL marks.
	(iv) (v)	Write Q. No. in the Answer Book in accordance with Q. No Page/Space be left blank between the answers. Al be crossed.	
	(vi) (vii)	Extra attempt of any question or any part of the question Use of calculator is allowed.	on will not be considered.
		PART-II	
Q. 2.	(a)	Describe the assumption of Bohr's atomic model. Be establish the energy expression of the rotation of e atomic species.	
	(b)	Derive de-Broglie's equation for the dual nature of a for microscopic and macroscopic properties of substa	11 5 1 ()
	(c)	What are the postulates of Quantum Mechanics?	(6) (20
Q. 3.	(a)	What is Third law of thermodynamics? How it entropies of substance.	
	(b)	Discuss the isothermal expansion of a gas and derive done due to expansion of a gas.	the equation for the work (7)
	(c)	Explain the law of corresponding states.	(6) (20
Q. 4.	(a)	Deduce the rate expression for 2^{nd} order reaction what terms are same. What is the half-life period for the $2n$	nd order reaction?
	(b) (c)	What is activation energy? How it can be determined Write a note on Transition state theory of reaction rat	
Q. 5.	(a)	Develop a relation among phase, component and d complete diagram for water system.	egree of Freedom. Draw a (10)
	(b) (c)	What is catalysis? Differentiate between positive and What is stoichiometry? Explain it with help of examp	
Q. 6.	(a)	State and explain Lowry-Bronsted theory and Lewis In what way Lewis theory differs from Bronsted theory	
	(b)	Explain with the help of examples why pH of a buffe significantly on small addition of acids and bases.	
	(c)	What are indicators? How a suitable indicator can be	chosen? Discuss. (6) (20
Q. 7.	(a)	Give an account of phenomena of isomerism in co- suitable example.	ordination compound with (8)
	(b) (c)	Describe the extraction of thorium from mozite sand. Compare the properties of lanthanides and actinides?	
Q. 8.	(a) (b)	Explain Kohlrausch's Law? Give its applications. What is meant by transport number of ions? G	(7) ive different methods for (7)
	(c)	determination of transport number. What is specific conductance? How it can be determ bridge?	nined by using Wheatstone (6) (20

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2019 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

<u>Roll Number</u>

CHEMISTRY, PAPER-II

TIME ALLO PART-I(MC		: THREE HOURS MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MA MAXIMUM MA		
NOTE: (i) (ii) (iii) (iv) (v) (v) (vi) (vi)	Attemp All the places. Write (No Pag be cross Extra a	Q. No. in the Answer Book in ac ge/Space be left blank between	n PART-II . ALL question n must be attempted at or ecordance with Q. No. in t the answers. All the blan	ne place instead of he Q.Paper. k pages of Answer	at dif	
		<u>P</u>	<u>ART – II</u>			
Q. No. 2.	(a) (b) (c)	Elaborate the optical isomerism Express the resolution and its a Explain the geometric isomeris	applications.	es.	(10) (5) (5)	(20)
Q. No. 3.	(a)	Prepare a plausible synthesis for A. \longrightarrow \longrightarrow H B. \longrightarrow H C. \parallel \longrightarrow H D. \parallel \longrightarrow H F. \implies H Br Br Br Br Br	→ Br Br	ansformation:	(12)	
	(b) (c)	Explain the type of hybridizati Mention any three methods for			(4) (4)	(20)
Q. No. 4.	(a)	Describe the necessary cond benzene into the following. Nitrobenzene, Ethyl be Benzoic acid, and Chlorobenze	nzene, cyclohexane,	uired to convert Benz-aldehyde,	(8)	
	(b)	Draw all possible structures of arcontaining the benzene ring.		formula C_9H_{12}	(6)	
	(c)	How do you account for the by electrophiles than nitrobenz	-	e easily attacked	(6)	(20)
Q. No. 5.	(a)		hanism for the following r promoethane and NaOH. 2-chloro-2-methyl propane		(8)	
	(b)	Discuss the various factors, natur group in SN2 reaction.	• • •		(8)	
	(c)	How does methyl iodide react Acetic acid, Mg, Alcoholic KC		ts?	(4)	(20)

CHEMISTRY, PAPER-B

Q. No. 6.	(a)	Describe two methods for preparation of salicylic acid? How would you convert it into (a) Phenol, (b) Salol, (c) Benzoic acid and (d) Aspirin? Give its at least two medicinal uses.	(10)	
	(b)	How will you obtain the following from suitable mono carboxylic acid? (a) Iso-butane (b) Butanone (c) Benzamide (d) Propionaldehyde.	(6)	
	(c)	Describe the mechanism of esterification of an acid.	(4)	(20)
Q. No. 7.	(a)	An unknown substance shows a molecular ion peak at $m/z=170$ with a relative intensity of 100. The M+1 peak has relative intensity of 13.2 and the M+2 peak has an intensity of 1.00. What is the molecular formula for this substance?	(10)	
	(b)	Mention the various tools to interpret the mass spectra.	(5)	
	(c)	What is the nitrogen rule? Explain it with suitable examples.	(5)	(20)
Q. No. 8.	(a) (b)	Elucidate the various steps involved in Glycolysis. Express the role of ATP in Glycolysis.	(12) (4)	
	(c)	Describe the pathway that leads to the formation of Lactic acid.	(4)	(20)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2020 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

<u>Roll Number</u>

CHEMISTRY, PAPER-I

	E ALL Γ-I(M(IUM MA IUM MA		
NOT	E: (i) (ii) (iii) (iv) (v) (v) (vi) (vi)	Part-II is to be attempted on the separate A Attempt ONLY FOUR questions from PA All the parts (if any) of each Question mu places. Write Q. No. in the Answer Book in accord No Page/Space be left blank between the be crossed. Extra attempt of any question or any part of Use of calculator is allowed.	RT-II . ALL questions carry E ust be attempted at one place i dance with Q. No. in the Q.Pape answers. All the blank pages o	nstead of er. f Answe	f at diff	
		PART	<u>-11</u>			
Q. 2.	(a)	Write two equations of state for real gase important features.	s and compare them high lighti	ng their	(10)	
	(b)	(i) Explain Heisenberg's uncertainty prin(ii) Discuss Born's interpretation of wave	-	(05) (05)	(10)	(20)
Q.3. (a) Explain the Kohlrausch law. Why do the real solution law?		e real solution should deviate f	rom the	(10)		
	(b)	Compare Langmuir's and Freundlich's ac	lsorption isotherms.		(10)	(20)
Q. 4.	(a)	Explain the Arrhenius equation. Also high	n light its applications and limit	tations.	(10)	
	(b)	Explain various acid-base theories. What	are hard and soft acids and base	es?	(10)	(20)
Q.5. (a) Make a comparison of column chromatography and th (TLC) by highlighting merits and demerits of the both.			ography	(10)		
	(b)	Explain Werner's theory of coordinati d-block transition metals.	on complexes. Give example	es from	(10)	(20)
Q.6. (a) Give a comprehensive classification of various Also mention potential application of each.		e i	nniques.	(10)		
	(b)	(i) What is Hydrogen bonding. Explain.(ii) Describe Hybidization in p-block element	ts.	(05) (05)	(10)	(20)
Q. 7.	(a)	Explain crystal Field Theory (CFT) for d-	block elements.		(10)	
	(b)	Write an extensive essay on types of cher	nical bonding giving examples.		(10)	(20)
Q. 8.	Writ	e short notes on the following: (i) Liquid junction potential (ii) Potentiometry (iii) Collision theory of Chemica (iv) Transition state theory.	l reactions.	(5	each)	(20)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2020 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

CHEMISTRY, PAPER-II

CHENHS I KI, I AI EK-H							
TIME ALLC PART-I(MC	OWED: THR QS): MAX	EE HOURS IMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MAR MAXIMUM MAR			
 NOTE: (i) Part-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks. (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places. 							
(iv) (v)	 (iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed. 						
(vi)	Extra attempt	•••••	part of the attempted ques	stion will not be consid	lered.		
		<u>]</u>	PART-II				
Q.No. 2.	-	lifference between:		(5	5 each) (20)		
	(i) (ii)	Inductive and Field ef Inductive and Resonar					
	(ii) (iii)	Localized and Deloca					
	(iii) (iv)	Conjugation and Hype	e				
		5.0 51	, ,				
Q.No. 3. (a)	Q.No. 3. (a) "The resonance effect has an appreciable influence on physical characteristics and (10) the chemical reactivity of organic molecules". Elaborate the statement with the help of examples.						
(b)		AS mechanism (Electro pounds react with elect	philic Aromatic Substitu rophiles.	tion) through which	(5)		
(c)	Discuss factor reaction.	ors which favour an elim	ination reaction occurrin	g over a substitution	(5) (20)		
Q.No. 4. How would you carry out the following conversions? Account for your answer with (4 mechanism in each case.		(4 each) (20)					
	(i)		\rightarrow (CH ₃) ₂ C(OH)CH(CI				
	(ii)		\rightarrow (CH ₃) ₃ CCH(OH)CH				
	(iii) (iv)	$(CH_3)_3CCH=CH_2$ $(CH_3)_3CC=CH$	\rightarrow (CH ₃) ₃ CCH ₂ CH ₂ OH	1			
	(\mathbf{v})	$(CH_3)_3CC=CH$ $(CH_3)_3CC=CH$					
		()))	(5)5 2				
Q.No. 5.							
	Elaborate the	m with the help of react Corey House reaction					
	(i) (iii)	Kolbe reaction	(iv) Simmons - Smith	n Reaction			
Q.No. 6.	-	you convert cyclohexanc chanisms of the reaction	one into the following cons.	mpounds? Write (4 each) (20)		
	. ,	•	(b) Caprolactam (C(f) Cyclohexane	C) Cycloheptanone			
Q.No. 7. (a)	How can a rac	cemic mixture be separat	ted into its components?	Describe different met	hods. (16)		
(b)	 (b) (-)-Lactic acid has a specific rotation of - 3.8°. What will be the specific rotation of a solution containing 7.5g of (-)-lactic acid and 2.5 g of (+)-lactic acid? 						
Q.No. 8. (a)		gen and cellulose are pol oth structurally and func	ymers of glucose. How v tionally.	will you differentiate ar	mong (12)		

(b) Explain precisely the following terms.
(i) Glycolysis (ii) Glycogenolysis (iii) Glycogenesis (iv) gluconeogenesis

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2022 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

CHEMISTRY, PAPER-I

			(_)	MAXIMUM MARK MAXIMUM MARK	
NOT	E: (i) (ii) (iii) (iv) (v) (v) (vi)	places. Write Q. No. in the Answer Book in accor No Page/Space be left blank between the be crossed. Extra attempt of any question or any par	PART-II. ALL questions must be attempted at one ordance with Q. No. in the answers. All the blank	e place instead of at d e Q.Paper. pages of Answer Boo	ifferent
		PAR	<u>RT-II</u>		
Q. 2.	(a)	Derive Schrodinger wave equation for par	ticle in one dimensional b	DOX. (1	10)
	(b)	Discuss Heisenberg's Uncertainty princip	le.	((05)
	(c)	What is corrosion? How it can be prevented	ed?	((05) (20
Q. 3.	(a)	What is Stereoisomerism? Discuss it with	reference to coordination	complexes. (0	08)
	(b)	Define and explain Jahn-Teller theorem.		((06)
	(c)	Write a short note on column chromatogra	aphy.	(1	06) (20
). 4 .	(a)	What is Valence Bond theory? How dinorganic molecules?	loes this theory explain	s the structure of ((08)
	(b)	Define and explain the phenomenon of res	sonance in inorganic com	pounds. ((06)
	(c)	Write some general characteristics of actin	nides.	((06) (20
Q. 5.	(a)	What is photoelectric effect? How quantum	m mechanics explains this	s effect? (0	08)
	(b)	What is wave-function? Discuss its interpre-	retation given by Born.	((06)
	(c)	What are fuel cells? Discuss their working	g with suitable examples.	((06) (20
Q. 6.	(a)	What are electron-deficient compounds? I	Discuss bond in such com	pounds. ((07)
	(b)	Define and explain the VSEPR mode substances.	l to explain the geom		07)
	(c)	Discuss variation in oxidation states of lar	nthanides.	((06) (20
Q. 7.	(a)	What is Nernst equation? Explain it.		((08)
	(b)	Define and explain Kohlrausches's law.		(0	07)
	(c)	Write a short note on Arrhenius equation.		((05) (20
Q. 8.	(a)	What is crystal field theory? How do complexes?	bes this theory explain		08) 06)
	(b)	Explain Lewis theory of acids and bases.		× ×	06) (20
	(c)	Write a short note on thin layer chromatog	graphy.		20
		****	****		

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2022 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

CHEMISTRY, PAPER-II

TIME AI PART-I(1	LOWED: THREE HOURS MCQS): MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MARKS MAXIMUM MARKS			
 NOTE: (i) Part-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks. (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places. (iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed. (vi) Extra attempt of any question or any part of the attempted question will not be considered. 						
	I	PART-II				
Q. 2.	Define the following terms and give suit	table examples	(4 each)	(20)		
	(i) Aromaticity (ii) Conj	ugation (iii) Inductive effect			
	(iv) Imine-enamine Tautomerism (v)	Intra molecular Hydr	rogen Bonding			
Q. 3.	Write down Preparations of Alkanes and Aldehydes. Also give specific example of addition reactions of alkenes with special reference to Markonikav and anti Markonikav rule.					
Q.4. (a)	Starting from acetylene how you can pre-	epare 1-Octyne.	(10)			
(b)	Write down the condition for the conver	rsion of 2-Octyne to cis	2-Octene. (10)	(20)		
Q. 5.	Write the structural formula of your choice for all the structural isomers with the molecular formula C_4H_6 . Also explain cis, trans, E,Z and syn, anti geometrical isomerism.					
Q. 6.	Phenol is more acidic than methylalcol structures of phenoxide ion.	nol. Explain in detail.	Also draw resonating	(20)		
Q. 7. (a)	Describe the instrumentation of IR spec	trophotometer in detail	(15)			
- ()	What are the basic Principals of IR Spec	•	(05)	(20)		
		1 5				
Q.8. (a)	What is chemical shift? What are the fa	ctors effecting chemica	ll shift? (10)			
(b)	Describe the instrumentation of NMR sp	pectroscopy.? *****	(10)	(20)		

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2023 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

<u>Roll Number</u>

CHEMISTRY, PAPER-I

TIME ALLOWED: THREE HOURS PART-I(MCQS): MAXIMUM 30 MINUT		: THREE HOURS MAXIMUM 30 MINUTES	PART-I (MCQS)MAXIMUM MARKS =PART-IIMAXIMUM MARKS =				
NOTE	E: (i)		I is to be attempted on the separ				
(ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.							
(iii) All the parts (if any) of each Question must be attempted at one place instead of at d						ifferen	
 places. (iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. (v) No Page/Space be left blank between the answers. All the blank pages of Answer Boo 							
					k mus		
be crossed.							
(vi) Extra attempt of any question or any part of the question will not be considered.							
	(vii)	Use of	calculator is allowed.				
			<u>PA</u>	<u>RT-II</u>			
Q.2.	(a)		lowing reaction occurs via two	steps, where the first step is	rate-	(12)	
			ining step.				
			$NO_{2}(g) + NO_{2}(g) \rightarrow NO(g) + NO_{3}(g) + CO(g) \rightarrow NO_{2}(g) + NO_{3}(g) + O(g) \rightarrow NO_{3}(g) \rightarrow NO_{3}(g) + O(g) \rightarrow NO_{3}(g) + O(g) \rightarrow NO_{3}(g) + O(g) \rightarrow NO_{3}(g) + O(g) \rightarrow NO_{3}(g) \rightarrow NO_{3}(g) + O(g) \rightarrow NO_{3}(g) \rightarrow NO_{3}(g$				
		i.	Write down the rate equation				
		ii.	Which molecule acts as a ca		e a reason.		
		iii.	Which molecule is an interr	nediate in this reaction and	justify it.		
	(b)	Describ	be Arrhenius's equation.			(8)	(20)
Q.3. (a)		An exr	plosion is usually considered ad	iabatic indicating negligibl	le heat transfer	(10)	
2.01	()	1	hough it's rapidly expanding			(10)	
		-	ature as the surroundings, and t	he boundary permits heat the	ansfer. Explain		
		-	enomenon.	.	· ···	(10)	$\langle 2 0 \rangle$
	(b)		a working diagram for a rever mal steps and two constant-pre			(10)	(20)
			to operate this engine?	ssure steps. How many nea	a reservoirs are		
						(1.0)	
Q.4.			be Schrodinger Wave Equation t	for a particle in a three-dime	ensional box.	(10)	
	(b) (c)	1	n photoelectric effect. s a wave function? Give Born's	interpretation of wave funct	ion	(8) (2)	(20)
	(0)	vv nat 1.	s a wave function: Give Doni s	interpretation of wave funct	lion.	(2)	(20)
Q.5.	(b)		be Nernst's equation.			(10)	
	(b)		be the significance of pH, pK_a , a	1	2	(6)	
	(c)	What 19	s the relationship between condu	ictance and Kohlrausch's la	w?	(4)	(20)
Q.6.	(a)	Describ	be three methods of mechanical	phase separation.		(10)	
۲	(b)		discuss "The Hard-Soft Acid-B			· · ·	(20)
07	(a)	Compo	re Valence Dand Theory with N	alocular Orbital Theory		(10)	
Q.7.	(a) (b)	-	re Valence Bond Theory with N s the oxidation state? Differentia		ate and valency	(10) (6)	
			ency of an element with suitable		are und valency		
	(c)		he molecular orbital configurati	-		(4)	(20)
			O_2^+ , O_2 , O_2^- and O_2^{-2}				
Q.8.		Discuss	s the following in detail.		(5 each)		(20)
-		i.	Crystal Field Theory		``'		. ,
			Hess's Law				
			Electrophoresis Technique	_			
		137	Froundlich Advarntion leathorn	2			

iv. Freundlich Adsorption Isotherm

FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION-2023** FOR RECRUITMENT TO POSTS IN BS-17 **UNDER THE FEDERAL GOVERNMENT**

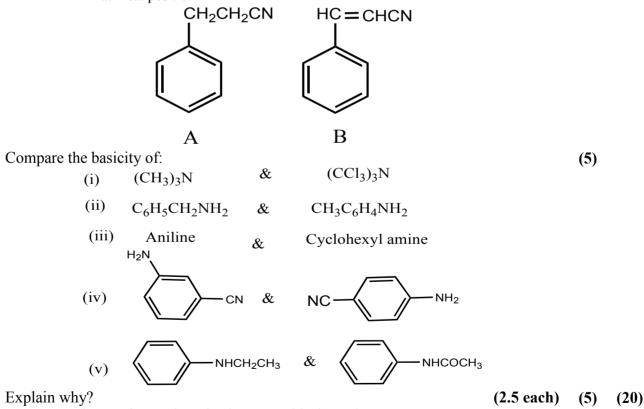
Roll Number

CHEMISTRY, PAPER-II

TIME ALLOWED: THREE HOURS	PART-I (MCQS)	MAXIMUM MARKS = 20				
PART-I(MCQS): MAXIMUM 30 MINUTES	PART-II	MAXIMUM MARKS = 80				
NOTE: (i) Part II is to be attempted on the generate Answer Pack						

II is to be attempted on the separate Answer Book.

- (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.
- (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
- (iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
- (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
- (vi) Extra attempt of any question or any part of the attempted question will not be considered.
- (vii) Use of calculator is allowed.

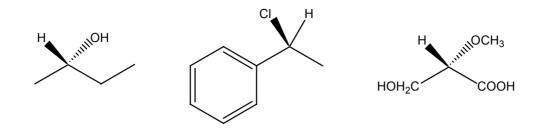

PART-II

- **O.** 2. Arrange the following alkenes in order of their relative stability. How will you proceed to (5) **(a)** determine the order practically?
 - i. 1-hexene
 - ii. cis-3-hexene
 - trans-3-hexene iii.
 - (iv) 2-methyl-2-pentene
 - 2,3-dimethyl-2-butene (v)
 - Explain why? **(b)**

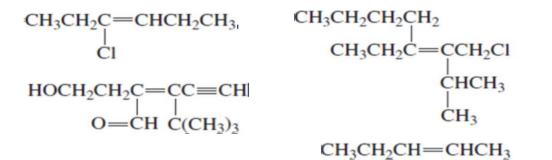
(c)

(i)

- (5) Poly substitution is a complicating factor in aromatic alkylation but not in aromatic nitration or halogenation.
- (ii) A undergoes nitration predominantly at the ortho/ para positions but B mainly at meta position



- (d)
 - Tertiary carbocation is more stable than primary. (i)
 - (ii) Ethanol has higher boiling point than diethyl ether.
- Write the structural formula for more stable conformation of each of the following Q. 3. **(a)** (8) compounds.
 - a) trans-1-Fluoro-3-methylcyclohexane,
 - b) cis-1-Iodo-4-methylcyclohexane
 - c) cis-1-tert-Butyl-4-methylcyclohexane,
 - d) *cis*-1,3,5-Trimethylcyclohexane


Page 1 of 3

CHEMISTRY, PAPER-II

(b) Mention R & S configuration of the following compounds.

(c) Draw and label the *E* and *Z* isomers for each of the following compounds.

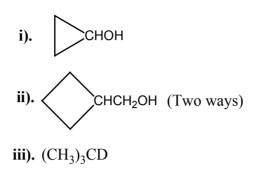
(d) Draw the structure of (Z)-3-isopropyl-2-heptene.

- Q. 4. (a) In benzaldehyde, two of the ring protons have resonance at 7.87 ppm, and the other three (4each) (20) have resonance in the range from 7.5 to 7.6 ppm. Explain.
 - (b) Arrange the following protons in the decreasing order of their δ values in 1H-NMR and account for your order: Methyl, ethylenic, acetylenic, aryl and aldehydic.
 - (c) List the solvents most commonly used in IR spectroscopy. Why water and ethanol are not suitable solvents?
 - (d) The UV spectrum of acetone shows absorption maxima at 166, 189, and 279 nm. What type of transition is responsible for each of these bands?
 - (e) What types of electronic transitions are possible for each of the following compounds?
 - (i) Cyclopentene,
 - (ii) Acetaldehyde,
 - (iii) Dimethyl ether,
 - (iv) Methyl vinyl ether.

Q. 5. (a) Write down the reagents, conditions and mechanisms of the following reactions. (10 each) (20)

- i). Kolbe reaction.
- **ii).** Williamson synthesis
- iii). Dow Process
- iv). Reimer-Tiemann reaction
- v). Bromination of phenol
- (b) Outline all steps involved in the synthesis of the following compounds from benzene or toluene, assuming that the ortho / para mixtures are separable.
 - i). n-Butylbenzene
 - ii). m-Nitrotoluene
 - iii). p-Bromonitrobenzene
 - iv). p-Bromobenzoic acid.
 - v). 1,2-Dibromo-4-nitrobenzene
- Q. 6. (a) Describe with equations all possible methods that can be used for the preparation of n- (10) hexane.
 - (b) Why Corey-House Method is more suitable as compared to Wurtz reaction for the synthesis (5) of alkane. Explain with examples.

(5)


(5)

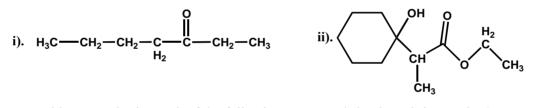
(2)

(20)

CHEMISTRY, PAPER-II

- (c) Draw the structures of following compounds and label them with IUPAC systematic rules. (5) (20)
 - i). 3-cyclopentylhexane
 - ii). 2-cyclobutyl-3-methylpentane
 - iii). Isopropylcyclodecane
 - iv). 2-methylbicyclo [3.2.0] heptanes
 - **v).** 8-methylbicyclo [3.2.1] octane
- Q. 7. (a) How can you prepare each of the following substances by a reaction involving Grignard (5) reagent?

iv). CH₃CH₂CHOHCH₃ (Two ways)


v). (CH₃CH₂)₃COH (Three ways)

(b) How will you bring about the following conversions?

(5)

i
$$CH_3CHBrCH_2COOC_2H_5 \longrightarrow HOOCCH_2CH(CH_3)CH_2COOH$$

ii $CH_3CH(COOC_2H_5)_2 \longrightarrow HOOCH_2CH(CH_3)CH_2COOH$

(c) How would you synthesize each of the following compounds by the Reformatsky (5) reaction?

- (d) How would you synthesize each of the following compounds by the Wittig reaction? (2.5) i). $C_6H_5C=CH_2$ ii). $C_6H_5CH=CHC_6H_5$ CH_3
- (e) How will you synthesize each of the following substances by an actoacetic ester synthesis? (2.5) (20)
 - i. 3,4-dimethyl-2,5-hexanedione
 - ii. 3-acetyl-5-hexanoic acid.

Q. 8. (a) Discuss the following topics.

- 1. Prostaglandins
- 2. Terpenes
- (b) Name the epimers of d -glucose.
- (c) Clearly represent the most stable conformation of the -pyranose form of each of the (4) (20) following sugars.
 - (a) D-Galactose
 - (b) D-Mannose
 - (c) L-Mannose
 - (d) L-Ribose

Page 3 of 3

(12)

(4)

(6 each)