

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT, 2015

PURE MATHEMATICS, PAPER-I

TIME ALLOWED: THREE HOURS			MAXIMUM MARKS = 100		
NOTE: (i) (ii)	TWO a All the	questions from SECTION-II. A	I, by selecting THREE questions fro ALL questions carry EQUAL marks. on must be attempted at one place in		
(iii) (iv)	Candid No Pag be cros	places. Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.			
(v) (vi)		ttempt of any question or any p Calculator is allowed.	art of the attempted question will not b	e considered.	
		<u>SEC</u>	TION-I		
Q.No.1.	(a)		a group G . Prove that the e. N _G (H)) is a subgroup of G .	10	
	(b)	Prove that a group of p	rime order is cyclic.	10	
Q.No.2.	(a) (b)		phic groups of order 12. isomorphic to a subgroup of as of G .	10 10	
Q.No.3.	(a)	of $Z_7 - \{\overline{0}\} = \{\overline{1}, \overline{2}, \overline{2}, \overline{1}, \overline{2}, $	gral domain. (You may use	8 (4+3+1)	
	(b)	Is Z_7 a field? Justify you Give an example of zer $Z_6 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{4}, \overline{5}\}.$	o divisor in	5 (2+1+2)	
	(c)	Is Z_6 an integral domain What is FIELD EXTENSI Verify that the field $Q[v]$ extension of Q .		7	
Q.No.4.	(a)	Show that $W = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right\}$ the vector space $\mathcal{M}_2(\mathbb{R})$ matrices over \mathbb{R} .	$a, b, c \in \mathbb{R}$ is a subspace of consisting of all 2×2	10	
	(b)	Prove that if a subset { V is linearly dependent	v_1, v_2, \cdots, v_k of a vector space then one vector among bination of the remaining	4	
	(c)	 (1) What is dimension of (2) Write a basis of ℝ³. (3) Is {(1,1,0), (1,1,2), (1,0), (1,0)	<pre>,1),(0,1,2)} ⊆ ℝ³ linearly dent? Justify your answer. ,1)} ⊆ ℝ³ linearly dependent or</pre>	6 (1+1+2+2)	

Page 1 of 2

PURE MATHEMATICS, PAPER-I

Q.No.5.	(a)	Define eigen value of a square matrix. Find eigen values and eigen vectors of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	10
	(b)	Find reduced echelon form of the matrix $A = \begin{bmatrix} 4 & 3 & 7 \\ 1 & 1 & 5 \\ 4 & 5 & 7 \end{bmatrix}$	10
	(c)	Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be eigen values of a square matrix $A = [a_{ij}]$. What are $ A $ and $trace(A)$ in terms of λ_i 's?	
		SECTION-II	
Q.No.6.	(a)	Find equations of tangent plane and normal line at a point (x_1, y_1, z_1) of ellipsoid $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{4} = 1$	10
	(b)	Find equation of the ellipse centered at the origin, a	5
	<i>(</i>)	focus at (3, 0) and vertex at (3, 0).	_
	(c)	Find the polar equation of a parabola $x = 8y^2$.	5
Q.No.7.	(a)	Find the equation of elliptic paraboloid $x = y^2 + z^2$	
		In spherical coordinates.	
	(b)	Convert the following equation of quadratic surface to standard form. What is this surface? $4x^2+y^2+4z^2-16x-2y+17=4$	10
Q.No.8.	(a)	Find curvature of the space curve	10
	. ,	$\vec{r}(t) = 2t\hat{\imath} + t^2\hat{\jmath} + \frac{1}{3}t^3\hat{k}$	
	(b)	(1) Find first fundamental form of the surface $\vec{r}(u,v) = (\cos u, \sin u, v)$	10 (6+4)
		(2) Write formulae for normal and Guassian curvature of a surface $\vec{r} = \vec{r}(u, v)$	
		r = r(u, v)	

PURE MATHEMATICS, PAPER-II

TIME ALLOWED: THREE HOURS		THREE HOURS	MAXIMUM MARKS = 100		
NOTE: (i)	TWO questions from SECTION-II. ALL questions carry EQUAL marks.				
(iii)	All the j places.	parts (if any) of each Questi	on must be attempted at one place instead of	at different	
(iv) (v)	Candidat No Page/	Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. No Page/Space be left blank between the answers. All the blank pages of Answer Book must			
(vi) (vii)	Extra atte	be crossed. Extra attempt of any question or any part of the attempted question will not be considered. Ise of Calculator is allowed.			
Q. No. 1.	(a)	Use the Mean Value Theor $ sinx - siny \le x - y $ for any real number x and		(10)	
	(b)	Use Taylor's Theorem to p	rove that	(10)	
	(0)		$hcotx - \frac{1}{2}h^2csc^2x + \frac{1}{3}h^3cotxcsc^2x + \cdots$		
Q. No. 2.	(a)	Evaluate $\lim_{x \to 0} \frac{\sin x - \ln(s^x \cos x)}{x \sin x}$		(8)	
	(b)	Find the equation of the asy	$xy = x^2 + 3.$	(6)	
	(c)	Evaluate the integral $\int_0^2 x^3$	$(\sqrt{2x+3})dx.$	(6)	
Q. No. 3.	(a)	Verify that $f_{xy} = f_{yx}$ for th $f(x,y) = e^{xy} \cos(bx + c)$		(8)	
	(b)	Find the points of relative e	extrema for $f(x) = sinxcos 2x$.	(6)	
	(c)	Evaluate the limit $\lim_{x \to 0} \frac{1}{x}$	$\frac{\cos x}{x^2}$	(6)	
Q. No. 4.	(a)	Let $d: X \times X \to R$ be a met $d'(x,y) = \frac{d(x,y)}{1 + d(x,y)}$ is also a metric.	ric space. Then $d': X \times X \to R$ defined by	(10)	
	(b)	Show that an open ball in n	netric space X is an open set.	(5)	
	(c)	Show that convergent sequ	ence in a metric space is Cauchy sequence.	(5)	
Q. No. 5.	(a)		ce, a subset A of X is dense if and only if A	(3)	
	(b)	-	en series converges or diverges:	(8)	
		$\sum_{n=1}^{\infty} \frac{(2n)!}{4^n}$		(6)	
	(c)	Determine whether the give conditionally or diverges:	en series converges absolutely, converges		
		$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n)!}.$		(6)	
		1		$\mathbf{D}_{\mathrm{opt}} = 1 \text{ of } 2$	

PURE MATHEMATICS, PAPER-II

(b)

SECTION-II

Q. No. 6.	(a)	Use De Moivre's Theorem to evaluate	$\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)$		(10)
-----------	-----	-------------------------------------	--	--	------

(b) Evaluate
$$\oint_C \frac{z+2}{z} dz$$
, where C is the circle $z = 2e^{i\theta}$ ($0 \le \theta \le 2\pi$). (10)

Q. No. 7. (a) Find the Laurent series that represents the function: (10) $f(z) = z^2 sin\left(\frac{1}{z^2}\right).$ (b) Evaluate the sum of the infinite series: (10) $cos\theta - \frac{1}{2}cos2\theta + \frac{1}{3}cos3\theta - \frac{1}{4}cos4\theta + \cdots.$

Q. No. 8. (a) Find the Fourier transform of :
(i)
$$f(t) = e^{-|t|}$$
 (ii) $f(t) = sin\alpha t^2$ (10)

Find the residue at
$$z = 0$$
 of the functions:
(i) $f(z) = \frac{1}{z+z^2}$ (ii) $f(z) = z\cos\left(\frac{1}{z}\right)$
(10)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2016 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PURE MATHEMATICS

TIME ALLOWED: THREE HOURS MAXIMUM MARKS =					
NOTE: (i)	Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B and				
	ONE Question from SECTION-C. AI	L questions carry EQUAL marks.			
(ii)	All the parts (if any) of each Question	n must be attempted at one place instead of at different			
	places.				
(iii)	Candidate must write Q. No. in the An	swer Book in accordance with Q. No. in the Q.Paper.			
(iv)	No Page/Space be left blank between	the answers. All the blank pages of Answer Book must			
	be crossed.				
(v)	Extra attempt of any question or any pa	art of the attempted question will not be considered.			
(vi)	Use of Calculator is allowed.				
	SEC	<u>FION-A</u>			
Q. 1. ^(a)	Prove that the normaliser of a subset of	F a group G is a Subgroup of G . (10)			

- (b) Let A be a normal subgroup and B a subgroup of a group G. Then prove that (10) (20) < A, B > = AB
- **Q.2.** (a) Let *a* be a fixed point of a group *G* and consider the mapping $I_a : G \to G$ defined (10) by $I_a(g) = aga^{-1}$ where $g \in G$.

Show that
$$I_a$$
 is an automorphism of G . Also show that for $a, b \in G, I_a.I_b=I_{ab}$ (10) (20)

(b) Let
$$M_2(R) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in R \right\}$$
 be the set of all 2×2 matrices with

real entries. Show that ($M_2(R),\,+,\,\cdot$) forms a ring with identity. Is ($M_2(R),\,+,\,\cdot$) a field?

- **Q.3.** (a) Let $T: X \rightarrow Y$ be a linear transformation from a vector space X into a Vector (10) space Y. Prove that Kernal of T is a subspace.
 - (b) Find the value of λ such that the system of equations (10) (20)

 $x + \lambda y + 3z = 0$ $4x + 3y + \lambda z = 0$ 2x + y + 2z = 0

has non-trivial solution.

SECTION-B

- Q. 4. (a) Using $\delta \epsilon$ definition of continuity, prove that the function Sin^2x is continuous (10) for all $x \in \mathbb{R}$.
 - (b) Find the asymptotes of the curve $(x^2-y^2)(x+2y) + 5(x^2+y^2) + x+y = 0$ (10) (20)

Q.5. (a) Prove that the maximum value of
$$\left(\frac{1}{x}\right)^x$$
 is $e^{l/e}$ (10)

PURE MATHEMATICS

- **Q. 6.** (a) Find the area enclosed between the curves $y=x^3$ and y=x. (10)
 - (b) A plane passes through a fixed point (a, b, c) and cuts the coordinate axes in (10) (20) A,B,C. Find the locus of the centre of the sphere OABC for different positions of the plane, O is the origin.

SECTION-C

Q. 7. (a) Determine P(z) where (10) $P(z) = (z - z_1)(z - z_2)(z - z_3)(z - z_4)$ with $z_1 = e^{i\pi/4}, z_2 = \bar{z}_1, z_3 = -z_1$ and $z_4 = -\bar{z}_1$.

Q. 8. (a) Use Cauchy Integral Formula to evaluate $\int_c \frac{c \circ h \Xi + s i 2\Xi}{\Xi - \overline{\Gamma}/2} d\Xi$ along the simple (10) closed counter C: $|\Xi|=3$ described in the positive direction.

(b) State and prove Cauchy Residue Theorem. (10) (20)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2017 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

<u>Page 1 of 2</u>

PURE MATHEMATICS

only if $HK = KH$. (b) If N , M are normal subgroups of a group G , prove that $NM/M \cong N/N \cap M$. (c) 2. (a) If R is a commutative ring with unit element and M is an ideal of R then show that M is a maximal ideal of R if and only if R/M is a field. (b) If F is a finite field and $\alpha \neq 0$, $\beta \neq 0$ are two elements of F then show that we can find elements α and b in F such that $1 + \alpha a^2 + \beta b^2 = 0$. (c) 3. (a) Let V be a finite-dimensional vector space over a field F and W be a subspace of V . Then show that W is finite-dimensional, dim $W \leq \dim V$ and dim $V/W = \dim V - \dim W$. (b) Suppose V is a finite-dimensional vector space over a field F . Prove that a linear transformation $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0. SECTION-B (c) 4. (a) Use the Mean-Value Theorem to show that if f is differentiable on an interval I , and if $ f'(x) \leq M$ for all values of x in I , then $ f(x) - f(y) \leq M x - y $ for all values of x and $y = y(t)$ are differentiable at t , and if z = f(x, y) is differentiable at the point $(x, y) = (x(t), y(t))$, then z = f(x(t), y(t)) is differentiable at t and $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$ where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y) . (c) Evaluate the double integral $\iint_R (3x - 2y) dx dy$			OWED: THREE HOURS		
(iii) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Pa (iv) No Page/Space be left blank between the answers. All the blank pages of Answer Book be crossed. (v) Extra attempt of any question or any part of the attempted question will not be consider (vi) Use of Calculator is allowed. SECTION-A Q. 1. (a) Let <i>H</i> , <i>K</i> be subgroups of a group <i>G</i> . Prove that <i>HK</i> is a subgroup of <i>G</i> if and only if <i>HK=KH</i> . (b) If <i>N</i> , <i>M</i> are normal subgroups of a group <i>G</i> , prove that $NM/M \cong N/N \cap M$. Q. 2. (a) If <i>R</i> is a commutative ring with unit element and <i>M</i> is an ideal of <i>R</i> then show (1) that <i>M</i> is a maximal ideal of <i>R</i> if and only if <i>R/M</i> is a field. (b) If <i>F</i> is a finite field and $\alpha \neq 0, \beta \neq 0$ are two elements of <i>F</i> then show that we can find elements <i>a</i> and <i>b</i> in <i>F</i> such that $1 + \alpha a^2 + \beta b^2 = 0$. Q. 3. (a) Let <i>V</i> be a finite-dimensional vector space over a field <i>F</i> and <i>W</i> be a subspace of <i>V</i> . Then show that <i>W</i> is finite-dimensional, dim $W \leq \dim V$ and dim $V/W = \dim V - \dim W$. (b) Suppose <i>V</i> is a finite-dimensional vector space over a field <i>F</i> . Prove that a linear transformation $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for <i>T</i> is not 0. SECTION-B Q. 4. (a) Use the Mean-Value Theorem to show that if <i>f</i> is differentiable on an interval <i>I</i> , and if $ f'(x) \leq M$ for all values of <i>x</i> in <i>I</i> , then $ f(x) - f(y) \leq X = - y $. (b) Prove that if $x = x(t)$ and $y = y(t)$ are differentiable at <i>t</i> , and if z = f(x(t), y(t)) is differentiable at the point $(x, y) = (x(t), y(t))$, then z = f(x(t), y(t)) is differentiable at the point $(x, y) = (x(t), y(t))$, then z = f(x(t), y(t)) is differentiable at the point $(x, y) = (x(t), y(t))$, then z = f(x(t), y(t)) is differentiable at the point $(x, y) = (x(t), y(t))$, then z = f(x(t), y(t)) is differentiable at the point $(x, y) = (x(t), y(t))$, then z = f(x(t), y(t)) is differentiable at the point $(x, y) = (x(t), y(t))$, then z = f(x(OTE		ONE Question from SECTION-C. AL All the parts (if any) of each Question	L questions carry EQUAL marks.	
(vi) Use of Calculator is allowed. SECTION-A Q. 1. (a) Let <i>H</i> , <i>K</i> be subgroups of a group <i>G</i> . Prove that <i>HK</i> is a subgroup of <i>G</i> if and only if <i>HK</i> - <i>KH</i> . (b) If <i>N</i> , <i>M</i> are normal subgroups of a group <i>G</i> , prove that <i>NM/M</i> \cong <i>N/N</i> ∩ <i>M</i> . Q. 2. (a) If <i>R</i> is a commutative ring with unit element and <i>M</i> is an ideal of <i>R</i> then show that <i>M</i> is a maximal ideal of <i>R</i> if and only if <i>R/M</i> is a field. (b) If <i>F</i> is a finite field and $\alpha \neq 0, \beta \neq 0$ are two elements of <i>F</i> then show that we can find elements <i>a</i> and <i>b</i> in <i>F</i> such that $1 + \alpha \alpha^2 + \beta b^2 = 0$. Q. 3. (a) Let <i>V</i> be a finite-dimensional vector space over a field <i>F</i> and <i>W</i> be a subspace (for <i>Y</i> . Then show that <i>W</i> is finite-dimensional, dim <i>W</i> ≤ dim <i>V</i> and dim <i>V/W</i> = dim <i>V</i> – dim <i>W</i> . (b) Suppose <i>V</i> is a finite-dimensional vector space over a field <i>F</i> . Prove that a (linear transformation $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for <i>T</i> is not 0. SECTION-B Q. 4. (a) Use the Mean-Value Theorem to show that if <i>f</i> is differentiable on an interval <i>I</i> , and if $ f'(x) \le M$ for all values of <i>x</i> in <i>I</i> , then $ f(x) - f(y) \le M x - y $ (b) Prove that if $x = x(t)$ and $y = y(t)$ are differentiable at <i>t</i> , and if $x = f(x, y)$ is differentiable at t and $\frac{dx}{dt} = \frac{\partial x}{\partial x} \frac{dt}{dt} + \frac{\partial x}{\partial y} \frac{dt}{dt}$ where the ordinary derivatives are evaluated at <i>t</i> and the partial derivatives are evaluated at (x, y) . Q. 5. (a) Evaluate the double integral $\iint_R (3x - 2y) dx dy$			Candidate must write Q. No. in the Ans No Page/Space be left blank between		
 Q.1. (a) Let <i>H</i>, <i>K</i> be subgroups of a group <i>G</i>. Prove that <i>HK</i> is a subgroup of <i>G</i> if and only if <i>HK=KH</i>. (b) If <i>N</i>, <i>M</i> are normal subgroups of a group <i>G</i>, prove that <i>NM/M</i> ≅<i>N/N</i>∩<i>M</i>. Q.2. (a) If <i>R</i> is a commutative ring with unit element and <i>M</i> is an ideal of <i>R</i> then show that <i>M</i> is a maximal ideal of <i>R</i> if and only if <i>R/M</i> is a field. (b) If <i>F</i> is a finite field and α ≠ 0, β ≠ 0 are two elements of <i>F</i> then show that we can find elements <i>a</i> and <i>b</i> in <i>F</i> such that 1 + αα² + βb² = 0. Q.3. (a) Let <i>V</i> be a finite-dimensional vector space over a field <i>F</i> and <i>W</i> be a subspace (of <i>V</i>. Then show that <i>W</i> is finite-dimensional, dim<i>W</i> ≤ dim <i>V</i> and dim <i>V/W</i> = dim <i>V</i> - dim <i>W</i>. (b) Suppose <i>V</i> is a finite-dimensional vector space over a field <i>F</i>. Prove that a linear transformation <i>T</i> ∈ <i>A</i>(<i>V</i>) is invertible if and only if the constant term of the minimal polynomial for <i>T</i> is not 0. SECTION-B Q.4. (a) Use the Mean-Value Theorem to show that if <i>f</i> is differentiable on an interval <i>I</i>, and if <i>f'</i>(<i>x</i>) ≤ <i>M</i> for all values of <i>x</i> in <i>I</i>, then <i>f</i>(<i>x</i>) = <i>f</i>(<i>x</i>(<i>y</i>)) is differentiable at <i>t</i> and if <i>z</i> = <i>f</i>(<i>x</i>, <i>y</i>) is differentiable at the point (<i>x</i>, <i>y</i>) = (<i>x</i>(<i>t</i>), <i>y</i>(<i>t</i>)), then <i>z</i> = <i>f</i>(<i>x</i>(<i>t</i>), <i>y</i>(<i>t</i>)) is differentiable at <i>t</i> and <i>d</i> at <i>d</i>				art of the attempted question will not be cons	idered.
only if <i>HK=KH</i> . (b) If <i>N</i> , <i>M</i> are normal subgroups of a group <i>G</i> , prove that <i>NM/M</i> \cong <i>N/N</i> ∩ <i>M</i> . (c) (d) If <i>R</i> is a commutative ring with unit element and <i>M</i> is an ideal of <i>R</i> then show that <i>M</i> is a maximal ideal of <i>R</i> if and only if <i>R/M</i> is a field. (e) If <i>F</i> is a finite field and $\alpha \neq 0$, $\beta \neq 0$ are two elements of <i>F</i> then show that we can find elements α and b in <i>F</i> such that $1 + \alpha \alpha^2 + \beta b^2 = 0$. (e) 3. (a) Let <i>V</i> be a finite-dimensional vector space over a field <i>F</i> and <i>W</i> be a subspace of <i>V</i> . Then show that <i>W</i> is finite-dimensional, dim <i>W</i> \leq dim <i>V</i> and dim <i>V/W</i> = dim <i>V</i> - dim <i>W</i> . (b) Suppose <i>V</i> is a finite-dimensional vector space over a field <i>F</i> . Prove that a linear transformation $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for <i>T</i> is not 0. SECTION-B (e) 4. (a) Use the Mean-Value Theorem to show that if <i>f</i> is differentiable on an interval <i>I</i> , and if $ f'(x) \leq M$ for all values of <i>x</i> in <i>I</i> , then $ f(x) - f(y) \leq M x - y $ for all values of <i>x</i> and <i>y</i> in <i>I</i> . Use this result to show further that $ \sin x - \sin y \leq x - y $. (b) Prove that if $x = x(t)$ and $y = y(t)$ are differentiable at <i>t</i> , and if x = f(x, y) is differentiable at the point $(x, y) = (x(t), y(t))$, then z = f(x(t), y(t)) is differentiable at <i>t</i> and $\frac{dx}{dt} = \frac{\partial x dx}{\partial y dt}$ where the ordinary derivatives are evaluated at <i>t</i> and the partial derivatives are evaluated at (x, y) . (c) Evaluate the double integral $\iint_{R} (3x - 2y) dx dy$			SECT	<u> TION-A</u>	
$NMM \cong N/N \cap M.$ Q.2. (a) If <i>R</i> is a commutative ring with unit element and <i>M</i> is an ideal of <i>R</i> then show (1) that <i>M</i> is a maximal ideal of <i>R</i> if and only if <i>R/M</i> is a field. (b) If <i>F</i> is a finite field and $\alpha \neq 0, \beta \neq 0$ are two elements of <i>F</i> then show that we can find elements <i>a</i> and <i>b</i> in <i>F</i> such that $1 + \alpha a^2 + \beta b^2 = 0.$ Q.3. (a) Let <i>V</i> be a finite-dimensional vector space over a field <i>F</i> and <i>W</i> be a subspace of <i>V</i> . Then show that <i>W</i> is finite-dimensional, dim <i>W</i> ≤ dim <i>V</i> and dim <i>V/W</i> = dim <i>V</i> - dim <i>W</i> . (b) Suppose <i>V</i> is a finite-dimensional vector space over a field <i>F</i> . Prove that a linear transformation $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for <i>T</i> is not 0. SECTION-B Q.4. (a) Use the Mean-Value Theorem to show that if <i>f</i> is differentiable on an interval <i>I</i> , and if $ f'(x) \le M$ for all values of <i>x</i> in <i>I</i> , then $ f(x) - f(y) \le M x - y $ for all values of <i>x</i> and <i>y</i> in <i>I</i> . Use this result to show further that $ \sin x - \sin y \le x - y .$ (b) Prove that if $x = x(t)$ and $y = y(t)$ are differentiable at <i>t</i> , and if $x = f(x, y)$ is differentiable at the point $(x, y) = (x(t), y(t))$, then $z = f(x(t), y(t))$ is differentiable at t and $\frac{dx}{dt} = \frac{\partial x}{\partial x} \frac{dx}{dt} + \frac{\partial x}{\partial y} \frac{dy}{dt}$ where the ordinary derivatives are evaluated at <i>t</i> and the partial derivatives are evaluated at (x, y) . Q.5. (a) Evaluate the double integral $\iint_{R} (3x - 2y) dx dy$. 1.	(a)	• • • •	Prove that HK is a subgroup of G if and	(10)
that <i>M</i> is a maximal ideal of <i>R</i> if and only if <i>R</i> / <i>M</i> is a field. (b) If <i>F</i> is a finite field and $\alpha \neq 0, \beta \neq 0$ are two elements of <i>F</i> then show that we can find elements <i>a</i> and <i>b</i> in <i>F</i> such that $1 + \alpha \alpha^2 + \beta b^2 = 0$. (c) (a) Let <i>V</i> be a finite-dimensional vector space over a field <i>F</i> and <i>W</i> be a subspace of <i>V</i> . Then show that <i>W</i> is finite-dimensional, dim <i>W</i> ≤ dim <i>V</i> and dim <i>V</i> / <i>W</i> = dim <i>V</i> - dim <i>W</i> . (b) Suppose <i>V</i> is a finite-dimensional vector space over a field <i>F</i> . Prove that a linear transformation $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for <i>T</i> is not 0. SECTION-B (c) (a) Use the Mean-Value Theorem to show that if <i>f</i> is differentiable on an interval <i>I</i> , and if $ f'(x) \le M$ for all values of <i>x</i> in <i>I</i> , then $ f(x) - f(y) \le M x - y $ for all values of <i>x</i> and <i>y</i> in <i>I</i> . Use this result to show further that $ \sin x - \sin y \le x - y $. (b) Prove that if $x = x(t)$ and $y = y(t)$ are differentiable at <i>t</i> , and if $z = f(x, y)$ is differentiable at <i>t</i> and $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$ where the ordinary derivatives are evaluated at <i>t</i> and the partial derivatives are evaluated at (x, y) . (c) (a) Evaluate the double integral $\iint_R (3x - 2y) dx dy$		(b)	• • • •		(10) (20)
 (i) If it is the left at the V (0, P) of the theorem term of the formation that we can find elements a and b in F such that 1 + αa² + βb² = 0. (a) Let V be a finite-dimensional vector space over a field F and W be a subspace of V. Then show that W is finite-dimensional, dimW ≤ dim V and dim V/W = dim V - dim W. (b) Suppose V is a finite-dimensional vector space over a field F. Prove that a linear transformation T ∈ A(V) is invertible if and only if the constant term of the minimal polynomial for T is not 0. SECTION-B (a) Use the Mean-Value Theorem to show that if f is differentiable on an interval <i>I</i>, and if f'(x) ≤ M for all values of x in <i>I</i>, then f(x) - f(y) ≤ M x - y for all values of x and y in <i>I</i>. Use this result to show further that sin x - sin y ≤ x - y . (b) Prove that if x = x(t) and y = y(t) are differentiable at t, and if z = f(x, y) is differentiable at t and dz/dx d d d d d d d d d d d d d d d d d d	. 2.	(a)	0		(10)
of <i>V</i> . Then show that <i>W</i> is finite-dimensional, dim $W \le \dim V$ and dim $V/W = \dim V - \dim W$. (b) Suppose <i>V</i> is a finite-dimensional vector space over a field <i>F</i> . Prove that a linear transformation $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for <i>T</i> is not 0. SECTION-B Q. 4. (a) Use the Mean-Value Theorem to show that if <i>f</i> is differentiable on an interval <i>I</i> , and if $ f'(x) \le M$ for all values of <i>x</i> in <i>I</i> , then $ f(x) - f(y) \le M x - y $ for all values of <i>x</i> and <i>y</i> in <i>I</i> . Use this result to show further that $ \sin x - \sin y \le x - y $. (b) Prove that if $x = x(t)$ and $y = y(t)$ are differentiable at <i>t</i> , and if z = f(x, y) is differentiable at the point $(x, y) = (x(t), y(t))$, then z = f(x(t), y(t)) is differentiable at <i>t</i> and $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$ where the ordinary derivatives are evaluated at <i>t</i> and the partial derivatives are evaluated at (x, y) . Q. 5. (a) Evaluate the double integral $\iint_{R} (3x - 2y) dx dy$		(b)	can find elements <i>a</i> and <i>b</i> in <i>F</i> such the		(10) (20)
 (b) Suppose V is a finite-dimensional vector space over a field F. Prove that a linear transformation T ∈ A(V) is invertible if and only if the constant term of the minimal polynomial for T is not 0. SECTION-B Q.4. (a) Use the Mean-Value Theorem to show that if f is differentiable on an interval I, and if f'(x) ≤ M for all values of x in I, then f(x) - f(y) ≤ M x - y for all values of x and y in I. Use this result to show further that sin x - sin y ≤ x - y . (b) Prove that if x = x(t) and y = y(t) are differentiable at t, and if z = f(x, y) is differentiable at the point (x, y) = (x(t), y(t)), then z = f(x(t), y(t)) is differentiable at t and dx/dxt = ∂z/∂x dxt/∂y dx/dxt = ∂z/∂y dxt where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y). Q.5. (a) Evaluate the double integral ∫∫_R (3x - 2y) dx dy 	. 3.	(a)			(10)
(b) Suppose V is a finite dimension tree of space over a field 1.1 Prove that a linear transformation $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for <i>T</i> is not 0. SECTION-B Q. 4. (a) Use the Mean-Value Theorem to show that if <i>f</i> is differentiable on an interval <i>I</i> , and if $ f'(x) \le M$ for all values of <i>x</i> in <i>I</i> , then $ f(x) - f(y) \le M x - y $ for all values of <i>x</i> and <i>y</i> in <i>I</i> . Use this result to show further that $ \sin x - \sin y \le x - y $. (b) Prove that if $x = x(t)$ and $y = y(t)$ are differentiable at <i>t</i> , and if $z = f(x, y)$ is differentiable at the point $(x, y) = (x(t), y(t))$, then $z = f(x(t), y(t))$ is differentiable at <i>t</i> and $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$ where the ordinary derivatives are evaluated at <i>t</i> and the partial derivatives are evaluated at (x, y) . Q. 5. (a) Evaluate the double integral $\iint_{R} (3x - 2y) dx dy$			$\dim W \le \dim V \text{ and } \dim V/W =$	dim V – dim W.	
Q. 4. (a) Use the Mean-Value Theorem to show that if <i>f</i> is differentiable on an interval <i>I</i> , and if $ f'(x) \le M$ for all values of <i>x</i> in <i>I</i> , then $ f(x) - f(y) \le M x - y $ for all values of <i>x</i> and <i>y</i> in <i>I</i> . Use this result to show further that $ \sin x - \sin y \le x - y $. (b) Prove that if $x = x(t)$ and $y = y(t)$ are differentiable at <i>t</i> , and if $z = f(x, y)$ is differentiable at the point $(x, y) = (x(t), y(t))$, then $z = f(x(t), y(t))$ is differentiable at <i>t</i> and $\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$ where the ordinary derivatives are evaluated at <i>t</i> and the partial derivatives are evaluated at (x, y) . (a) Evaluate the double integral $\iint_R (3x - 2y) dx dy$		(b)	linear transformation $T \in A(V)$ is inv	vertible if and only if the constant term of	(10) (20)
(14) interval <i>I</i> , and if $ f'(x) \le M$ for all values of <i>x</i> in <i>I</i> , then $ f(x) - f(y) \le M x - y $ for all values of <i>x</i> and <i>y</i> in <i>I</i> . Use this result to show further that $ \sin x - \sin y \le x - y $. (b) Prove that if $x = x(t)$ and $y = y(t)$ are differentiable at <i>t</i> , and if z = f(x, y) is differentiable at the point $(x, y) = (x(t), y(t))$, then z = f(x(t), y(t)) is differentiable at <i>t</i> and $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$ where the ordinary derivatives are evaluated at <i>t</i> and the partial derivatives are evaluated at (x, y) . (16) Q. 5. (a) Evaluate the double integral $\iint_R (3x - 2y) dx dy$			SECT	<u> TION-B</u>	
$z = f(x, y) \text{ is differentiable at the point } (x, y) = (x(t), y(t)), \text{ then}$ $z = f(x(t), y(t)) \text{ is differentiable at } t \text{ and}$ $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$ where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y) . Q. 5. (a) Evaluate the double integral $\iint_{R} (3x - 2y) dx dy$ (10)	. 4.	(a)	interval <i>I</i> , and if $ f'(x) \le M$ for all values of <i>x</i> and <i>y</i> in <i>I</i> . Use this is	alues of x in I, then M x - y result to show further that	(10)
are evaluated at (x, y) . Q. 5. (a) Evaluate the double integral $\iint_R (3x - 2y) dx dy$ (10)		(b)	z = f(x, y) is differentiable at the po z = f(x(t), y(t)) is differentiable at t	int $(x, y) = (x(t), y(t))$, then and	(10) (20)
$\iint_R (3x - 2y) dx dy \tag{1}$			-	valuated at <i>t</i> and the partial derivatives	
(b) Where <i>R</i> is a region enclosed by the circle $x^2 + y^2 = 1$. (10)	. 5.	(a)		x dy	(10)
Find the area of the region enclosed by the curves		(b)			(10) (20)
$y = \sin x$, $y = \cos x$, $x = 0$, $x = 2\pi$.			-		

PURE MATHEMATICS

- **Q. 6.** (a) Find an equation of the ellipse traced by a point that moves so that the sum (10) of its distance to (4,1) and (4,5) is 12.
 - (b) Show that if *a*, *b* and *c* are nonzero, then the plane whose intercepts with the coordinate axes are x = a, y = b, and z = c is given by the equation. (10) (20)

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

SECTION-C

Q.7. (a) Prove that a necessary and sufficient condition that w = f(z) = u(x, y) + iv(x, y)be analytic in a region *R* is that the Cauchy-Riemann equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \text{and} \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ (10)

are satisfied in R where it is supposed that these partial derivatives are continuous in R.

- (b) Show that the function $f(z) = \overline{z}$ is not analytic anywhere in the complex (10) (20) plane *Z*.
- **Q. 8.** (a) Let f(z) be analytic inside and on the boundary *C* of a simply-connected (10) region *R*. Prove that

$$f'(a) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-a)^2} dz.$$

(b) Show that

$$\int_0^{2\pi} \frac{d\theta}{(5-3\sin\theta)^2} = \frac{5\pi}{32}.$$
 (10) (20)

FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION-2018** FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT **PURE MATHEMATICS**

TIME ALLOWED: THREE HOURS		MAXIMUM MARKS = 100
NOTE: (i)	Attempt FIVE questions in all by sele	cting TWO Questions each from SECTION-A&B and
	ONE Question from SECTION-C. AL	L questions carry EQUAL marks.
(ii)	All the parts (if any) of each Question	n must be attempted at one place instead of at different
	places.	
(iii)	Candidate must write Q. No. in the Ans	swer Book in accordance with Q. No. in the Q.Paper.
(iv)	No Page/Space be left blank between	the answers. All the blank pages of Answer Book must
	be crossed.	
(v)	Extra attempt of any question or any pa	art of the attempted question will not be considered.
(vi)	Use of Calculator is allowed.	

<u>SECTION-A</u>

Q. 1.	(a)	Let H and K be normal subgroups of a group G . Show that HK is a normal subgroup of G .	(10)
	(b)	Let <i>H</i> and <i>K</i> be normal subgroups of a group <i>G</i> such that $H \subseteq K$. Then show that $\frac{(G/H)}{(K/H)} \cong G/K$	(10) (20)
Q. 2.	(a)	Show that every finite integral domain is a field.	(10)
	(b)	 Consider the following linear system, x + 2y + z = 3 ay + 5z = 10 2x + 7y + az = b (i) Find the values of <i>a</i> for which the system has unique solution. (ii) Find the values of the pair (<i>a</i>, <i>b</i>) for which the system has more than one solution. 	(10) (20)
Q. 3.	(a)	Find condition on a,b,c so that vector (a,b,c) in \mathbb{R}^3 belongs to	(10)
2.0.	(b)	Find condition on a,b,c so that vector (a,b,c) in K [*] belongs to $W = span \{u_1, u_2, u_3\}$ where $u_1 = (1,2,0), u_2 = (-1,1,2), u_3 = (3,0,-4).$ Let W_1 and W_2 be finite dimensional subspaces of a vector space V. Show that $dimW_1 + dimW_2 = dim (W_1 \cap W_2) + dim (W_1 + W_2)$	(10) (20)

SECTION-B

Q.4. (a) Let $f(x) = \begin{cases} x^2 & if \ x \le 1 \\ x & if \ x > 1 \end{cases}$

Does the Mean Value Theorem hold for f on $\left[\frac{1}{2}, 2\right]$.

(b) Calculate the.
$$\lim_{x \to 0} \frac{lnsin3x}{lnsinx}$$
 (10) (20)

Q.5. (a) Evaluate
$$\int_{-1}^{5} |x-2| dx$$
. (10)

(b) Prove that
$$f_{xy}(0,0) \neq f_{yx}(0,0)$$
 if (10) (20)

$$f(x,y) = \begin{cases} x^2 y \sin \frac{1}{x} & \text{when } x, y \text{ are not both } 0 \\ 0 & \text{when } x, y \text{ are both } 0 \end{cases}$$
Page 1 of 2

(10)

PURE MATHEMATICS

- **Q. 6.** (a) Find the area of the region bounded by the cycloid (10) $x = a(\theta - \sin \theta), \ y = a(1 - \cos \theta)$ and its base.
 - (b) Find the equation of a plane through (5,-1,4) and perpendicular to each of the planes (10) (20)

x + y - 2z - 3 = 0 and 2x - 3y + z = 0

SECTION-C

Q.7. (a) Express $\cos^5 \theta \sin^3 \theta$ in a series of sines of multiples of θ . (10)

(b) Use Cauchy's Residue Theorem to evaluate the integral $\int_C \frac{5z-2}{Z(Z-1)} dz$ where C (10) (20) is the circle |z| = 2, described counter clock wise.

- Q. 8. (a) Find the Laurent series that represent the function $f(z) = \frac{z+1}{z-1}$ in the domain (10) $1 < |z| < \infty$.
 - (b) Expand f(x) = sinx in a Fourier cosine series in the interval $0 \le x \le \pi$. (10) (20)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2019 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT PURE MATHEMATICS

TIME ALL	OWED: THREE HOURS	MAXIMUM MARKS = 100	
NOTE: (i)	Attempt FIVE questions in all by sele	cting TWO Questions each from SECTION-A&B and	
	ONE Question from SECTION-C. AL	L questions carry EQUAL marks.	
(ii)	All the parts (if any) of each Question	n must be attempted at one place instead of at different	
	places.		
(iii)	Write Q. No. in the Answer Book in ac	cordance with Q. No. in the Q.Paper.	
(iv)	(iv) No Page/Space be left blank between the answers. All the blank pages of Answer Book m be crossed.		
(v)	Extra attempt of any question or any pa	art of the attempted question will not be considered.	
(vi)	Use of Calculator is allowed.		

- Q. 1. (a) Show that the order and the index of a subgroup divides the order of a finite (10) group.
 - (b) Show that every finite integral domain is a field. (10) (20)
- Q. 2. (a) Show that the characteristic of an integral domain is R is either zero or a (10) prime.
 - (b) Determine whether or not the set $\{(1, 2, -1), (0, 3, 1), (1, -5, 3)\}$ of vectors (10) (20) is a basis for R^3 .
- **O.3.** (a) Show that a one-to-one linear transformation preserves basis and dimension. (10)
 - (b) Solve the system of linear equations:
 - $2x_1 + x_2 + 5x_3 = 4$ $3x_1 - 2x_2 + 2x_3 = 2$ $5x_1 - 8x_2 + 2x_3 = 1.$

SECTION-B

Q.4. (a) Solve
$$\int_0^{\frac{\pi}{2}} \sin^2 6x \cos^4 3x \, dx.$$
 (10)

(b) Find the area enclosed by
$$y = \frac{6}{2 - \cos \theta}$$
. (10) (20)

- Q.5. (a) Show that in any conic semi-latusrectum is the harmonic mean between the (10) segments of focal chord.
 - (b) Prove that the evolute of hyperbola (10) (20) $2xy = a \text{ is } (x + y)^{\frac{2}{3}} - (x - y)^{\frac{2}{3}} = 2a^{\frac{2}{3}}.$
- **Q. 6.** (a) Define Supremum and Infimum of a sequence. Find the supremum and infimum (10) of the set

$$\left\{(-1)^n\left(1-\frac{1}{n}\right), n=1,2,3\dots\right\}.$$

(b) Evaluate

$$\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}.$$

Page 1 of 2

(10) (20)

(10) (20)

SECTION-C

Q.7. (a) Show that
$$Log(1 + \cos\theta + i\sin\theta) = \ln(2\cos\frac{\theta}{2}) + i\frac{\theta}{2}$$
. (10)

- (b) Find v such that f(z) = u + iv is analytic. (10) (20)
- Q. 8. (a) Prove that the series $z(1-z) + z^2(1-z) + z^3(1-z) + \cdots$ converges (10) for |z| < 1, and find its sum.
 - (b) Find the residues of $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+4)}$ at all its poles in the finite plane. (10) (20)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2020 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PURE MATHEMATICS

TIME	E ALL	OWED: THREE HOURS	MAXIMUM MA	ARKS = 100
NOTI		ONE Question from SECTION-C. AL	cting TWO Questions each from SECTIO L questions carry EQUAL marks. In must be attempted at one place instead o	
	(iv)	Write Q. No. in the Answer Book in ac No Page/Space be left blank between be crossed.	the answers. All the blank pages of Answe	
	(v) (vi)	Extra attempt of any question or any pa Use of Calculator is allowed.	art of the attempted question will not be cons	sidered.
		<u>SEC</u>	<u>FION-A</u>	
Q. 1.	(a)	following:	$\rightarrow G'$ be a homomorphism then prove the re the identities of <i>G</i> and <i>G'</i> respectively	(10)
		(iii) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in C$		
	(b)	Prove that every homomorphic image of group.	of a group is isomorphic to some quotient	(10) (20)
Q. 2.	(a)	A ring <i>R</i> is without zero divisor if and o	only if the cancellation law hold.	(10)
	(b)	Prove that arbitrary intersection of subr	ings is a subring.	(10) (20)
Q. 3.	(a)	Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the linear trans $T(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_3, x_2 + x_3)$ of T.	formation defined by x_3). Find a basis and dimension of Range	(10)
	(b)	Prove that every finitely generated vect	or space has a basis.	(10) (20)
		SECT	<u>CION-B</u>	
Q. 4.	(a)	Find the critical points of $f(x) = x^3$ on which f is increasing and on which	-12x-5 and identify the open intervals <i>f</i> is decreasing.	(10)
	(b)	Find the horizontal and vertical asympt	otes of the graph of $f(x) = -\frac{8}{x^2 - 4}$	(10) (20)
Q. 5.	(a)	Calculate $\int \frac{-2x+4}{(x^2+1)(x-1)^2} dx$		(10)
	(b)	$\mathcal{O}\mathcal{A}$) if $w = x^2 + y^2 + z^2$, $z^3 - xy + yz + y^3 = 1$	(10) (20)
		and x and y are the independent variabl	es.	
Q. 6.	(a)	Determine the focus, vertex and directr	ix of the parabola $x^2 + 6x - 8y + 17 = 0$	(10)

(b) Find polar coordinates of the point *p* whose rectangular coordinates are $(3\sqrt{2}, -3\sqrt{2})$ (20)

<u>Page 1 of 2</u>

SECTION-C

Q.7. (a) Show that
$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$
 for all integers *n*. (10)

(b) Find the n, nth roots of unity. (10) (20)

Q.8. (a) Find the Taylor series generated by $f(\mathbf{x}) = \frac{1}{x}$ at a = 2. Where, if anywhere, (10) does the series converge to $\frac{1}{x}$?

(b) Show that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, (*p* a real constant) converges if p > 1, and (10) (20) diverges if P < 1